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Abstract

Code-Switch (CS) language presents a unique
challenge to modern natural language process-
ing systems. Although CS language is fre-
quently used in cross-lingual social contexts,
it remains an understudied area. In this work,
we explore fine-tuning pre-trained large lan-
guage models to perform well on CS language
for a variety of natural language processing
tasks, including language modeling and sen-
timent analysis. In this report, we focus on
the Spanish-English CS, known colloquially as
Spanglish. We evaluated the performance of
pre-trained auto-regressive and encoder-only
language models that were fine-tuned on mono-
lingual, multi-lingual, and CS data on CS lan-
guage. We find that fine-tuning models on
CS data enable models to better handle CS
language, as shown by the improvement in
the language modeling and sentiment analy-
sis tasks. We also analyze the embedded space
of these fine-tuned models and find that fine-
tuning models on CS text improve language-
agnostic embeddings compared to pre-trained
models.

1 Introduction

Code-switching is a common linguistic phe-
nomenon where an individual fluently incorporates
multiple languages into a sentence. People often
use code-switch (CS) language to communicate
in multi-lingual, global settings, including social
media, politics, and science. Yet, CS language
is still a relatively new topic in natural language
processing despite its frequency in spoken and writ-
ten contexts. As large-language models become
increasingly prevalent in our lives, we must de-
velop models that perform well on CS input. These
models may enhance the applicability and gener-
alizability in many downstream tasks, including
automatic speech recognition (ASR) and machine
translation. Our project aims to explore CS input
in large language models. In particular, we will
examine CS in sentiment analysis.

2 Related Work

Numerous examples in the literature attempt to
model CS language. The most basic task is identify-
ing when language switch points occur [16], which
has also been done in low-resource language-pairs
[6].

There are efforts to use transfer learning to fine-
tune general language models to the multilingual
task [5][7], however, other approaches specifically
target the CS task [2] by using a special CS corpus.
This is also seen for downstream tasks like machine
translation [12][17] and ASR [10]. A common
problem with this approach is the lack of data, but
there is work on the generation of artificial CS data
for the task of machine translation [17]

Another interesting approach is to learn align-
ment for CS language without the need for CS data
[8]. This can be done thanks to advances in cross-
lingual word embedding models [15] [9].

3 Hypothesis

We aim to train a language model to model
Spanish and English (Spanglish) CS using the Lin-
guistic Code-switching Evaluation (LinCE) corpus.
We will also use this data for sentiment analysis.
Specifically, we will fine-tune pre-trained language
models on CS input and evaluate the model on per-
plexity. We will compare the original pre-trained
models as well as our fine-tuned models on the
tasks of language modeling and sentiment analysis.
We expect all fine-tuned models to have lower per-
plexity than the baseline. Furthermore, we expect
the biggest performance gain from fine-tuning the
code-switch data.

4 Datasets

CS language can occur in many different settings,
for example, in social media, politics, or science.
We specifically chose datasets containing Twitter
data to consistently analyze models trained in dif-



ferent languages. We also restricted our search to
datasets that contained sentiment labels in three
classes: negative, neutral, and positive. In addition
to the sentiment analysis datasets, we selected a
dataset with parallel sentences to analyze the cross-
lingual embedding spaces for each trained model.

The following are the chosen datasets for each
language used in training.

4.1 Code-Switched Spanish/English

The LinCE corpus [1] is a centralized benchmark
that contains data scraped from Twitter on four
code-switch language pairs for four downstream
tasks. We use the Spanish-English sentiment anal-
ysis dataset, which contains 18.8k CS sentences.
They are categorized into three classes: positive
(56.2%), negative (16.3%), neutral (27.6%). Ad-
ditionally, every word in each sentence is labeled
based on which language it belongs (lang1, lang2,
other, and ambiguous).

4.2 English

The Massive text embedding benchmark
(MTEB) corpus [13] contains 56 datasets on up to
112 languages and 8 tasks. We picked the dataset
containing tweets in English, for the task of senti-
ment classification. This dataset contains 31k total
tweets, categorized into positive (31.2%), negative
(28.3%) and neutral (40.5%).

4.3 Spanish

The Sentiment Analysis at SEPLN (TASS) 2018
workshop [11] contains a variety of tasks with
tweet data in different varieties of Spanish, from
Spain, Peru, and Costa Rica. We aggregated the
different varieties and ended up with a corpus con-
sisting of 2k tweets. The tweets were also paired
with sentiment labels in the three classes.

4.4 Parallel Sentences

To analyze the cross-lingual embedding spaces
learned by our model, we took the XNLI: The
Cross-Lingual NLI Corpus [3]. It provides par-
allel sentences in multiple languages, and we chose
a subset of the 2490 English and Spanish examples
for our study.

5 Experiments

5.1 Language Modeling

We used the GPT-2 [14] 1.5 billion parameter
generative model to form a language modeling

Parameter Value
Learning rate 5.00× 10−4

Train steps 200
Sentence length 40
Batch size 32

Table 1: Hyperparameters for GPT-2 Language Mod-
eling.

baseline. We selected GPT-2 for several reasons.
It is an open-source large language model that is
available at a manageable size, which enables us to
iterate experiments at a reasonable pace, while still
having the benefits of a large model. The model is
pre-trained on 40GB of text, primarily comprised
of English and code.

We assess the zero-shot performance of the pre-
trained model on CS data as a baseline of how well
the pre-trained model does on CS data in terms
of perplexity. We then fine-tune GPT-2 on the
monolingual datasets in English and Spanish, mul-
tilingual datasets sampling both English and Span-
ish, and the LinCE CS data. Since we only have
about 2k training examples for Spanish, we limit
the amount of data across all datasets to this num-
ber. This is done to ensure a fair comparison of the
effects of fine-tuning caused by adding different
data. In particular, the Spanish+English mix was
achieved by selecting 1000 examples at random
from each of the Spanish and English datasets.

5.2 Sentiment Analysis

5.2.1 Motivation
In addition to developing a general language model,
we also wanted to evaluate approaches to using
transformer models for downstream tasks that in-
volve CS data. We chose the sentiment analysis
task because the LinCe corpus [1] provides labeled
sentiment analysis data.

To motivate the need for models capable of han-
dling CS input, we examine the zero-shot perfor-
mance of mBERT [5] and XLM-RoBERTa [4].
Specifically, we use the kNN-based approach de-
scribed below and extract representations from the
pre-trained checkpoints of both models. We test
their performance on English, Spanish and CS in-
puts using data from the sources described in sec-
tion 4. Table 2 shows that both models have com-
parable performance when presented with English
or Spanish data, but suffer from drops in perfor-



Code-Switch English Spanish
Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

XLM-RoBERTa 39.12 36.75 47.43 47.42 47.25 44.20
mBERT 39.51 35.09 47.47 46.89 45.68 42.66

Table 2: Zero-shot sentiment analysis performance of mBERT and XLM-RoBERTa on CS, Spanish, and
English data. Both models underperform when presented with CS input

mance when given CS input. This validates the
necessity of developing approaches that improve
these models’ performance on CS data.

5.2.2 Fine-Tuning
To improve downstream task performance on code-
switched inputs, we propose fine-tuning a large pre-
trained model for the sentiment analysis task. We
evaluate various fine-tuning approaches by vary-
ing the language of the data provided to the model.
In all cases, we fine-tune the XLM-RoBERTa [4]
model on a sentiment analysis dataset, and all mod-
els are trained on the same number of training in-
stances. Additionally, the classes were balanced
and downsized to 5.4k instances for each dataset.
Specifically, we train the following models:

RoBERTweet fine-tuned on English-only data
using the MTEB twitter sentiment analysis dataset
[13].

RoBERTito fine-tuned on Spanish-only data
from the TASS 2018 Twitter dataset [11].

RoBERTwito fine-tuned on a randomly chosen
subset of the English and Spanish datasets, such
that half of the training data is Spanish-only and
the other half is English-only.

RoBERTinho fine-tuned on the code-switched
Spanish/English sentiment analysis dataset from
the LinCe corpus [1].

RoBERTinho-Plus fine-tuned on all of the code-
switch data available. This model is the only one
from the list that has a larger training data size of
approximately 12,000 sentences.

5.2.3 Classification Approaches
After fine-tuning the models, we evaluate two dif-
ferent approaches for classification.

Linear Classification Layer All models are fine-
tuned end-to-end with a softmax classification layer
added after the final layer of the pre-trained model.
This added classification layer is then used to gen-
erate predictions at test time.

KNN Classification In this method, we train
the model end-to-end with a classification layer
as above. However, to generate predictions after

training, we mean-pool the representations from
the penultimate layer (i.e. the input to the classifier)
of each token in our sequence. These mean-pooled
representations are then used as features for a k-
Nearest-Neighbors classifier. This setting allows
for zero-shot evaluation, as we do not need to fine-
tune the model to generate meaningful representa-
tions.

5.3 Cross-Lingual Embedding Spaces

After fine-tuning the XLM-RoBERTa model [4]
on each of our chosen datasets for sentiment anal-
ysis, we analyze the embedding spaces of each
model. We hypothesize that fine-tuning on CS
input may lead to more language-agnostic embed-
dings. To achieve this goal, we examine how close
embeddings are for sentences with same semantic
meaning in both Spanish and English, taken from
the parallel sentences corpus XLNI [3].

In particular, we collect the embeddings gener-
ated by the model at its last hidden state for each
token in the input text. These token embeddings are
then mean-pooled to get a sentence-level embed-
ding. The similarity of sentences is evaluated by
computing cosine-similarity on the raw sentence-
level embeddings.

The parallel sentences chosen for analysis are in
Spanish and English. The baseline is established by
the pre-trained embeddings for parallel sentences.
Then, we compare the effect of fine-tuning on dif-
ferent kinds of data (monolingual, multilingual, and
CS) on the similarity (cosine-similarity) between
these sentences.

Additionally, we use principal component analy-
sis (PCA) to analyze the reduced embedding space.
We assess the cosine similarity and the normal-
ized Euclidean distance between embeddings for
parallel sentences for the first five principal compo-
nents. We expect the cosine similarity to increase
and normalized euclidean distance to decrease with
fine-tuning on average.



Figure 1: Perplexity values for language modeling.
Fine-tuning decreases perplexity on training and test set
for each dataset.

6 Results

6.1 Language Modeling

Perplexity Baseline We calculated the perplex-
ity using GPT-2 on each sentence in the dataset.
As expected, perplexity is quite high, likely due
to a combination of the lack of Spanish in the cor-
pus used for pre-training and the small contexts
given the short nature of tweets. The Train and
Test Baseline depicts these splits in Figure 1.

Fine-tuning task per dataset First, we fine-
tuned GPT-2 on each chosen dataset. In this case,
we train and evaluate on the same dataset, for
each of [English, Spanish, English+Spanish, Code-
Switch]. We found that fine-tuning does reduce
perplexity on each individual dataset. It’s clear
from Figure 1 that the Train and Test splits have
both considerably lower perplexity than the base-
line (before fine-tuning). An interesting point is
that both the Code-Switch and the Spanish datasets
experience the biggest reduction in perplexity after
fine-tuning. This seems in line with our hypothesis
since the pre-training data contained only a small
number of Spanish examples.

Evaluation on CS Next, we took the fine-tuned
models and evaluated them on the Code-Switch
Test set. We can see from Figure 2 that fine-tuning
on all datasets, excluding English, performed better
on the CS Test set than the Baseline, which is the
pre-trained GPT-2. Additionally, Code-Switch and
English+Spanish fine-tuning seemed to do the best
on the task. This result supports the idea that fine-
tuning a mixed language corpus improves model
performance on code-switch language modeling.

Figure 2: Perplexity of fine-tuned models on CS Data.
Fine-tuning on code-switch achieves the lowest per-
plexity, although notably the English+Spanish model
achieves similar performance.

The model fine-tuned on English did considerably
worse due to overfitting – it seems that adding more
English data is not beneficial for the base model
GPT-2 when evaluating the Code-Switch language
modeling task.

6.2 Sentiment Analysis

After examining all the fine-tuning methods de-
scribed above in both evaluation settings (KNN vs.
Linear), we found that any fine-tuning objective
outperforms the XLM-RoBERTa baseline. How-
ever, monolingual fine-tuning on Spanish-only or
English-only data leads to the best classification
performance when using a linear classifier. This
may be a result of the lack of CS data in the pre-
training corpus of XLM-RoBERTa. Nonetheless,
when extracting representations from our models
and classifying with kNN, we find that models
trained on CS-only data perform the best. This
result indicates that training on CS data leads to
the most meaningful learnt representations for CS
text, and is further supported by our analysis of the
embedded spaces of these models.

As described above, RoBERTinho-Plus is
trained on all of the available CS sentiment analysis
data. The LinCe dataset includes a very significant
class imbalance, and when training on the entire
dataset, the linear classifier overfits and only pre-
dicts the majority class. This leads to the high ac-
curacy listed but a steep drop in F1 score. Nonethe-
less, using representations from RoBERTinho-Plus
with a kNN classifier leads to competitive perfor-
mance. This indicates that the representations it
learns may still be meaningful, even if the final



classification layer overfits.

6.3 Cross-Lingual Embeddings

We examined three metrics to quantify how the
cross-lingual embedding spaces change after fine-
tuning on CS input. Table 4 shows fine-tuning
on CS data decreases the average cosine-similarity
between parallel sentences for all datasets. This
decrease suggests that training RoBERTa for the
sentiment analysis task increases differences be-
tween embeddings and the raw embeddings may
not be informative for examining the cross-lingual
embedding space. Table 5 shows the similarity of
parallel embeddings after PCA, as measured by
cosine-similarity and Euclidian distance. Notably,
fine-tuning on mono-lingual and CS input increases
the cosine similarity and decreases the normalized
distance compared to the pre-trained baseline, with
RoBERTito and RoBERTinho achieving the best
performance for each metric, respectively. Figure
3 demonstrates that fine-tuning on CS sentences
disrupts the global structure of the XLM-RoBERTa
embedding space, which is driven by language type.
The clustering after fine-tuning is less distinct, and
the parallel embeddings are closer together in the
PCA space, which suggests that fine-tuning on CS
input may improve language-agnostic embeddings.

7 Limitations

One important limitation of our work was the
amount of data available. Since the Spanish dataset
used had significantly smaller amounts of sentences
for training, we limited the size of the other datasets
to the same number. This was done so the com-
parison between the models fine-tuned on different
datasets could be compared fairly in both the lan-
guage modeling and sentiment analysis tasks. Fur-
thermore, it’s also important to notice that our best
result in the language modeling task was achieved
through training on the CS dataset, and the eval-
uation was also done on this dataset (though on
unseen data). Even though the results are positive,
we acknowledge that the test data was collected
in the same methodology as the CS train set, so
results might be skewed toward lower perplexity.

Another limitation we would like to point out is
that the model RoBERTa is designed for word-level
embeddings, but we use it to analyze sentence-level
embeddings. Losses in information might occur

when averaging out the word embeddings to get a
sentence embedding.

8 Conclusion

Our experiments indicate that fine-tuning pre-
trained models for CS language yields better results
in a variety of tasks. Language modeling perplexity
is improved the most by fine-tuning on this kind
of data, but we also find that using a mixture of
languages without code-switching may also be ef-
fective in developing CS Models. We also saw a
similar trend on the downstream task of sentiment
analysis – fine-tuning on tweet data generally im-
proved model performance. Fine-tuning solely on
CS data achieved comparable performance to mod-
els fine-tuned on multi-lingual and mono-lingual
models. However, when examining the reduced
cross-lingual embedding space, we find fine-tuning
on CS may produce better language agnostic em-
beddings. Notably, XLM-RoBERTa was trained
significantly more in mono-lingual instances than
the few thousand CS instances used to fine-tune the
model in the work shown here. Future work may
explore if fine-tuning on larger sample sizes of CS
data more drastically improves embedding quality
for downstream tasks.

Because of these positive results, we believe it
is worthwhile to explore the problem further by
training larger models on a larger amount of data.

As CS language modeling improves, it could
also have important consequences on other lan-
guage tasks. An important example is Automatic
Speech Recognition (ASR). Much of the interac-
tion with personal assistant systems is done through
voice, so enhancing these models could yield a
much better experience for users who communi-
cate in CS. Another application could be automatic
captioning of videos that might include CS dia-
logue, or technical talks in other languages that
employ terms in multiple foreign languages.
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